Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 16: 1128545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251648

RESUMO

Objective: Disruption of the blood-spinal cord barrier (BSCB) with subsequent edema formation and further neuroinflammation contributes to aggravation of spinal cord injury (SCI). We aimed to observe the effect of antagonizing the binding of the neuropeptide Substance-P (SP) to its neurokinin-1 (NK1) receptor in a rodent SCI model. Methods: Female Wistar rats were subjected to a T9 laminectomy with or without (Sham) a T9 clip-contusion/compression SCI, followed by the implantation of an osmotic pump for the continuous, seven-day-long infusion of a NK1 receptor antagonist (NRA) or saline (vehicle) into the intrathecal space. The animals were assessed via MRI, and behavioral tests were performed during the experiment. 7 days after SCI, wet & dry weight and immunohistological analyses were conducted. Results: Substance-P inhibition via NRA showed limited effects on reducing edema. However, the invasion of T-lymphocytes and the number of apoptotic cells were significantly reduced with the NRA treatment. Moreover, a trend of reduced fibrinogen leakage, endothelial and microglial activation, CS-GAG deposition, and astrogliosis was found. Nevertheless, only insignificant general locomotion recovery could be observed in the BBB open field score and the Gridwalk test. In contrast, the CatWalk gait analysis showed an early onset of recovery in several parameters. Conclusion: Intrathecal administration of NRA might reinforce the integrity of the BSCB in the acute phase after SCI, potentially attenuating aspects of neurogenic inflammation, reducing edema formation, and improving functional recovery.

2.
Neural Regen Res ; 18(5): 1084-1089, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36254997

RESUMO

Assessment of locomotion recovery in preclinical studies of experimental spinal cord injury remains challenging. We studied the CatWalk XT® gait analysis for evaluating hindlimb functional recovery in a widely used and clinically relevant thoracic contusion/compression spinal cord injury model in rats. Rats were randomly assigned to either a T9 spinal cord injury or sham laminectomy. Locomotion recovery was assessed using the Basso, Beattie, and Bresnahan open field rating scale and the CatWalk XT® gait analysis. To determine the potential bias from weight changes, corrected hindlimb (H) values (divided by the unaffected forelimb (F) values) were calculated. Six weeks after injury, cyst formation, astrogliosis, and the deposition of chondroitin sulfate glycosaminoglycans were assessed by immunohistochemistry staining. Compared with the baseline, a significant spontaneous recovery could be observed in the CatWalk XT® parameters max intensity, mean intensity, max intensity at%, and max contact mean intensity from 4 weeks after injury onwards. Of note, corrected values (H/F) of CatWalk XT® parameters showed a significantly less vulnerability to the weight changes than absolute values, specifically in static parameters. The corrected CatWalk XT® parameters were positively correlated with the Basso, Beattie, and Bresnahan rating scale scores, cyst formation, the immunointensity of astrogliosis and chondroitin sulfate glycosaminoglycan deposition. The CatWalk XT® gait analysis and especially its static parameters, therefore, seem to be highly useful in assessing spontaneous recovery of hindlimb function after severe thoracic spinal cord injury. Because many CatWalk XT® parameters of the hindlimbs seem to be affected by body weight changes, using their corrected values might be a valuable option to improve this dependency.

3.
Cells ; 11(4)2022 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35203385

RESUMO

The Sonic Hedgehog protein (Shh) has been extensively researched since its discovery in 1980. Its crucial role in early neurogenesis and endogenous stem cells of mature brains, as well as its recently described neuroprotective features, implicate further important effects on neuronal homeostasis. Here, we investigate its potential role in the survival, proliferation, and differentiation of neural precursors cells (NPCs) under inflammatory stress as a potential adjunct for NPC-transplantation strategies in spinal cord injury (SCI) treatment. To this end, we simulated an inflammatory environment in vitro using lipopolysaccharide (LPS) and induced the Shh-pathway using recombinant Shh or blocked it using Cyclopamine, a potent Smo inhibitor. We found that Shh mediates the proliferation and neuronal differentiation potential of NPCs in vitro, even in an inflammatory stress environment mimicking the subacute phase after SCI. At the same time, our results indicate that a reduction of the Shh-pathway activation by blockage with Cyclopamine is associated with reduced NPC-survival, reduced neuronal differentiation and increased astroglial differentiation. Shh might thus, play a role in endogenous NPC-mediated neuroregeneration or even be a potent conjunct to NPC-based therapies in the inflammatory environment after SCI.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Diferenciação Celular , Proliferação de Células , Proteínas Hedgehog/metabolismo , Humanos , Células-Tronco Neurais/metabolismo , Transdução de Sinais
4.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884911

RESUMO

Cervical spinal cord injury (SCI) remains a devastating event without adequate treatment options despite decades of research. In this context, the usefulness of common preclinical SCI models has been criticized. We, therefore, aimed to use a clinically relevant animal model of severe cervical SCI to assess the long-term effects of neural precursor cell (NPC) transplantation on secondary injury processes and functional recovery. To this end, we performed a clip contusion-compression injury at the C6 level in 40 female Wistar rats and a sham surgery in 10 female Wistar rats. NPCs, isolated from the subventricular zone of green fluorescent protein (GFP) expressing transgenic rat embryos, were transplanted ten days after the injury. Functional recovery was assessed weekly, and FluoroGold (FG) retrograde fiber-labeling, as well as manganese-enhanced magnetic resonance imaging (MEMRI), were performed prior to the sacrifice of the animals eight weeks after SCI. After cryosectioning of the spinal cords, immunofluorescence staining was conducted. Results were compared between the treatment groups (NPC, Vehicle, Sham) and statistically analyzed (p < 0.05 was considered significant). Despite the severity of the injury, leading to substantial morbidity and mortality during the experiment, long-term survival of the engrafted NPCs with a predominant differentiation into oligodendrocytes could be observed after eight weeks. While myelination of the injured spinal cord was not significantly improved, NPC treated animals showed a significant increase of intact perilesional motor neurons and preserved spinal tracts compared to untreated Vehicle animals. These findings were associated with enhanced preservation of intact spinal cord tissue. However, reactive astrogliosis and inflammation where not significantly reduced by the NPC-treatment. While differences in the Basso-Beattie-Bresnahan (BBB) score and the Gridwalk test remained insignificant, animals in the NPC group performed significantly better in the more objective CatWalk XT gait analysis, suggesting some beneficial effects of the engrafted NPCs on the functional recovery after severe cervical SCI.


Assuntos
Neurônios Motores/fisiologia , Células-Tronco Neurais/transplante , Oligodendroglia/metabolismo , Traumatismos da Medula Espinal/terapia , Animais , Diferenciação Celular , Células Cultivadas , Vértebras Cervicais , Modelos Animais de Doenças , Feminino , Análise da Marcha , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imageamento por Ressonância Magnética , Células-Tronco Neurais/citologia , Oligodendroglia/fisiologia , Ratos , Ratos Transgênicos , Ratos Wistar , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/etiologia , Traumatismos da Medula Espinal/fisiopatologia
5.
Eur Spine J ; 30(6): 1509-1520, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33704579

RESUMO

PURPOSE: The Sonic Hedgehog (Shh) pathway has been associated with a protective role after injury to the central nervous system (CNS). We, therefore, investigated the effects of intrathecal Shh-administration in the subacute phase after thoracic spinal cord injury (SCI) on secondary injury processes in rats. METHODS: Twenty-one Wistar rats were subjected to thoracic clip-contusion/compression SCI at T9. Animals were randomized into three treatment groups (Shh, Vehicle, Sham). Seven days after SCI, osmotic pumps were implanted for seven-day continuous intrathecal administration of Shh. Basso, Beattie and Bresnahan (BBB) score, Gridwalk test and bodyweight were weekly assessed. Animals were sacrificed six weeks after SCI and immunohistological analyses were conducted. The results were compared between groups and statistical analysis was performed (p < 0.05 was considered significant). RESULTS: The intrathecal administration of Shh led to significantly increased polarization of macrophages toward the anti-inflammatory M2-phenotype, significantly decreased T-lymphocytic invasion and significantly reduced resident microglia six weeks after the injury. Reactive astrogliosis was also significantly reduced while changes in size of the posttraumatic cyst as well as the overall macrophagic infiltration, although reduced, remained insignificant. Finally, with the administration of Shh, gain of bodyweight (216.6 ± 3.65 g vs. 230.4 ± 5.477 g; p = 0.0111) and BBB score (8.2 ± 0.2 vs. 5.9 ± 0.7 points; p = 0.0365) were significantly improved compared to untreated animals six weeks after SCI as well. CONCLUSION: Intrathecal Shh-administration showed neuroprotective effects with attenuated neuroinflammation, reduced astrogliosis and improved functional recovery six weeks after severe contusion/compression SCI.


Assuntos
Contusões , Traumatismos da Medula Espinal , Animais , Proteínas Hedgehog , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Recuperação de Função Fisiológica , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico
6.
Stem Cells Int ; 2020: 5674921, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774390

RESUMO

Stem cell therapy with neural precursor cells (NPCs) has the potential to improve neuroregeneration after spinal cord injury (SCI). Unfortunately, survival and differentiation of transplanted NPCs in the injured spinal cord remains low. Growth factors have been successfully used to improve NPC transplantation in animal models, but their extensive application is associated with a relevant financial burden and might hinder translation of findings into the clinical practice. In our current study, we assessed the potential of a reduced number of growth factors in different combinations and concentrations to increase proliferation and differentiation of NPCs in vitro. After identifying a "cocktail" (EGF, bFGF, and PDGF-AA) that directed cell fate towards the oligodendroglial and neuronal lineage while reducing astrocytic differentiation, we translated our findings into an in vivo model of cervical clip contusion/compression SCI at the C6 level in immunosuppressed Wistar rats, combining NPC transplantation and intrathecal administration of the growth factors 10 days after injury. Eight weeks after SCI, we could observe surviving NPCs in the injured animals that had mostly differentiated into oligodendrocytes and oligodendrocytic precursors. Moreover, "Stride length" and "Average Speed" in the CatWalk gait analysis were significantly improved 8 weeks after SCI, representing beneficial effects on the functional recovery with NPC transplantation and the administration of the three growth factors. Nevertheless, no effects on the BBB scores could be observed over the course of the experiment and regeneration of descending tracts as well as posttraumatic myelination remained unchanged. However, reactive astrogliosis, as well as posttraumatic inflammation and apoptosis was significantly reduced after NPC transplantation and GF administration. Our data suggest that NPC transplantation is feasible with the use of only EGF, bFGF, and PDGF-AA as supporting growth factors.

7.
Stem Cell Res ; 45: 101812, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32361314

RESUMO

Cervical spinal cord injury (SCI) is a devastating event with often lifelong disability. In absence of good treatment options, stem cell therapy with among others neural precursor cells (NPCs) has been introduced to improve neuroregeneration. However, due to secondary injury cascades, survival and differentiation of transplanted NPCs remain poor. Physical therapy and rehabilitation are important corner stones for patients with SCI and have shown beneficial effects on neuroregeneration in animal models. In our current study, we therefore assessed the effects of treadmill training on the survival and differentiation of transplanted NPCs after cervical SCI in rats. Our findings suggest that survival of NPCs as well as differentiation into neurons and oligodendrocytes can be significantly increased when stem cell therapy is combined with treadmill training. In addition, myelination, regeneration of descending tracts and tissue sparing can be improved, resulting in better functional recovery. These results underline the importance of synergistic treatment strategies for SCI.


Assuntos
Medula Cervical , Células-Tronco Neurais , Traumatismos da Medula Espinal , Animais , Diferenciação Celular , Humanos , Células-Tronco Neurais/transplante , Oligodendroglia , Ratos , Medula Espinal , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...